

# Mr. Wright's Math Extravaganza

**Precalculus** 

# **Additional Trigonometric Topics**

Level 2.0: 70% on test, Level 3.0: 80% on test, Level 4.0: level 3.0 and success on applications Score I Can Statements

| 4.0 | □ I can demonstrate in-depth inferences and applications that go beyond what was taught.            |
|-----|-----------------------------------------------------------------------------------------------------|
| 3.5 | In addition to score 3.0 performance, partial success at score 4.0 content.                         |
|     | I can use the Law of Sines and Law of Cosines.                                                      |
| 3.0 | □ I can use vectors.                                                                                |
|     | I can use the trigonometric form of a complex number.                                               |
| 2.5 | No major errors or omissions regarding score 2.0 content, and partial success at score 3.0 content. |
|     | I can find the area of a triangle.                                                                  |
|     | <ul> <li>I can use the component form of vectors.</li> </ul>                                        |
|     | I can find the magnitude and add, subtract, scalar multiply, and dot product vectors.               |
| 2.0 | I can find a unit vector.                                                                           |
| 2.0 | I can use vectors in trigonometric form.                                                            |
|     | <ul> <li>I can find the angle between two vectors.</li> </ul>                                       |
|     | I can write complex numbers in trigonometric form.                                                  |
|     | I can perform algebraic operations using complex numbers in trigonometric form.                     |
| 1.5 | Partial success at score 2.0 content, and major errors or omissions regarding score 3.0 content.    |
| 1.0 | With help, partial success at score 2.0 content and score 3.0 content.                              |
| 0.5 | With help, partial success at score 2.0 content but not at score 3.0 content.                       |
| 0.0 | Even with help, no success.                                                                         |

#### Name: \_

# Precalculus

6-01 Law of Sines







Solve  $\triangle ABC$  where  $A = 58^\circ$ , a = 4.5, and b = 5





 $Area = \frac{1}{2}bc\sin A$  $Area = \frac{1}{2}ac\sin B$  $Area = \frac{1}{2}ab\sin C$ 

Created by Richard Wright - Andrews Academy

6-02 Law of Cosines

- When you \_\_\_\_\_use \_\_\_\_\_
- \_\_\_\_\_

## Law of Cosines

 $a<sup>2</sup> = b<sup>2</sup> + c<sup>2</sup> - 2bc \cos A$   $b<sup>2</sup> = a<sup>2</sup> + c<sup>2</sup> - 2ac \cos B$  $c<sup>2</sup> = a<sup>2</sup> + b<sup>2</sup> - 2ab \cos C$ 



С

Solve  $\triangle ABC$  where a = 20, b = 18, c = 13

## Area of a Triangle given all Sides

\_\_\_\_\_ Formula

$$Area = \sqrt{s(s-a)(s-b)(s-c)}$$

• Where 
$$s = \frac{a+b+c}{2}$$

Find the area of a triangle with sides 14 cm, 21 cm, 27 cm

В

 $\vec{v}$ 

# Precalculus

## 6-03 Vectors

#### Vector

- \_\_\_\_\_line segment  $\vec{v}$
- Has \_\_\_\_\_and \_\_\_\_\_
- Magnitude  $\|ec{v}\|$  is \_\_\_\_\_\_of the segment

#### **Component form**

- $\vec{v} = \langle v_1, v_2 \rangle$
- \_\_\_\_\_point
- $\vec{v} = \langle q_1 p_1, q_2 p_2 \rangle = \langle v_1, v_2 \rangle$
- $\|\vec{v}\| = \sqrt{(q_1 p_1)^2 + (q_2 p_2)^2}$
- $=\sqrt{v_1^2+v_2^2}$

Find the component form of the vector and its magnitude if its initial point is (1, 7) and its terminal point is (4, 3).

# Vector Operations $\vec{v}$ Scalar Multiplication $\vec{v} = \langle kv_1, kv_2 \rangle$ • $k \vec{v} = \langle kv_1, kv_2 \rangle$ $\vec{v} \cdot \vec{v} = \vec{v} \cdot \vec{$

 $\langle 2,\;3\rangle+\langle 1,\;0\rangle$ 

Name: \_\_\_\_\_

| Let $\vec{u} = \langle 1, 6 \rangle$ and $\vec{v} = \langle -4, 2 \rangle$ , find $3\vec{u}$ |  |  |  |  |   |   |  |  |  |  |          |
|----------------------------------------------------------------------------------------------|--|--|--|--|---|---|--|--|--|--|----------|
|                                                                                              |  |  |  |  |   |   |  |  |  |  |          |
|                                                                                              |  |  |  |  |   |   |  |  |  |  |          |
|                                                                                              |  |  |  |  |   |   |  |  |  |  |          |
|                                                                                              |  |  |  |  |   |   |  |  |  |  |          |
|                                                                                              |  |  |  |  |   |   |  |  |  |  |          |
| -                                                                                            |  |  |  |  |   |   |  |  |  |  | <b>^</b> |
|                                                                                              |  |  |  |  |   |   |  |  |  |  |          |
|                                                                                              |  |  |  |  |   |   |  |  |  |  |          |
|                                                                                              |  |  |  |  |   |   |  |  |  |  |          |
|                                                                                              |  |  |  |  |   |   |  |  |  |  |          |
|                                                                                              |  |  |  |  |   |   |  |  |  |  |          |
|                                                                                              |  |  |  |  | ١ | 1 |  |  |  |  |          |

| Let      | $\vec{u} =$ | (1, | 6) | and | v | = ( | -4, | 2> | , fin | d 2              | <i>v</i> + |
|----------|-------------|-----|----|-----|---|-----|-----|----|-------|------------------|------------|
|          |             |     |    |     |   |     |     |    |       |                  |            |
| F        |             |     |    |     |   |     |     |    |       |                  |            |
| _        | -           |     |    |     |   |     |     |    |       | $\square$        |            |
|          |             |     |    |     |   |     |     |    |       | $\left  \right $ |            |
| 4        |             |     |    |     |   |     |     |    |       |                  |            |
| Ľ        |             |     |    |     |   |     |     |    |       |                  |            |
| $\vdash$ | -           |     |    |     |   |     |     |    | -     | $\square$        |            |
|          |             |     |    |     |   | ╞   |     |    |       | $\left  \right $ |            |
|          |             |     |    |     |   |     |     |    |       |                  |            |
|          |             |     |    |     | , | ,   |     |    |       |                  |            |

## Unit Vectors

Vector in the \_\_\_\_\_\_direction, but magnitude is \_\_\_\_\_\_

$$\circ \quad \hat{u} = \frac{\bar{v}}{\|\bar{v}\|}$$

• Special Unit Vectors

# Linear Combination Form

• 
$$3\hat{\imath} + 2\hat{\jmath} = \langle 3, 2 \rangle$$

Let  $\vec{v} = 3\hat{\imath} - 4\hat{\jmath}$  and  $\vec{w} = 2\hat{\imath} + 9\hat{\jmath}$ , find  $2\vec{v} + \vec{w}$ .

## 6-04 Writing Vectors in Trigonometric Form

v

 $v_x$ 

 $\overline{v}_y$ 

### **Direction Angle**

- $v_x = \|\vec{v}\| \cos \theta$
- $v_y = \|\vec{v}\| \sin \theta$
- $\vec{v} = \|\vec{v}\| \langle \cos \theta , \sin \theta \rangle$
- $\tan \theta = \frac{v_y}{v_x}$

Write the vector in trig form.  $\langle -12, 5 \rangle$ 

Write the vector in component form. 10(cos 120°, sin 120°)

Find the component form of the vector representing velocity of an airplane descending at 100 mph at 45° below the horizontal.

Add the vectors. Write the result in trig form.  $4(\cos 210^\circ, \sin 210^\circ) + 2(\cos 30^\circ, \sin 30^\circ)$ 

An airplane is traveling at 724 km/h at 30° E of N. If the wind velocity is 32 km/h from the west, find the resultant speed and direction of the plane.

6-05 Dot Products



Are  $\langle 1, -4 \rangle$  and  $\langle 6, 2 \rangle$  orthogonal, parallel, or neither?

### Precalculus 6-05 Find Vector Components

- Let  $\vec{u}$  and  $\vec{v}$  be vectors such that  $\vec{u} = \vec{w_1} + \vec{w_2}$  where  $\vec{w_1}$  and  $\vec{w_2}$  are orthogonal and  $\vec{w_1}$  is parallel to  $\vec{v}$ .  $\vec{w_1}$  and  $\vec{w_2}$  are components of  $\vec{u}$ .
- $\overrightarrow{w_1}$  is the projection of  $\overrightarrow{u}$  onto  $\overrightarrow{v}$ :  $\overrightarrow{w_1} = proj_{\overrightarrow{v}} \overrightarrow{u}$

• 
$$\overrightarrow{w_1} = proj_{\overrightarrow{v}} \overrightarrow{u} = \frac{\overrightarrow{u} \cdot \overrightarrow{v}}{\|\overrightarrow{v}\|^2} \overrightarrow{v}$$

- $\overrightarrow{w_2} = \overrightarrow{u} \overrightarrow{w_1}$
- $Work = \vec{F} \cdot \vec{d}$



Find the projection of  $\vec{u} = \langle 3, 4 \rangle$  onto  $\vec{v} = \langle 8, 2 \rangle$ . Then write  $\vec{u}$  as the sum of 2 orthogonal vectors.

## 6-06 Trigonometric Form of a Complex Number



Write in standard form:  $z = 8\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right)$ 

Write in trig form: z = -2 - 2i

# 6-07 Trigonometric Form of a Complex Number Operations

## **Multiplication and Division**

• If 
$$z_1 = r_1(\cos \theta + i \sin \theta)$$
 and  $z_2 = r_2(\cos \theta + i \sin \theta)$ , then  

$$z_1 z_2 = r_1 r_2(\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2))$$

$$\frac{z_1}{z_2} = \frac{r_1}{r_2}(\cos(\theta_1 - \theta_2) + i \sin(\theta_1 - \theta_2))$$
If  $z_1 = 3\left(\cos\frac{\pi}{2} + i \sin\frac{\pi}{2}\right)$  and  $z_2 = 6\left(\cos\frac{\pi}{4} + i \sin\frac{\pi}{4}\right)$ , find  
 $z_1 z_2$ 

$$\frac{z_1}{z_2}$$

Exponents

 $Z_1$ 

 $z^n = r^n(\cos(n\theta) + i\sin(n\theta))$ 

Let z = 1 + i, find  $z^4$ 

**Roots of Complex Numbers** 

$$\sqrt[n]{z} = \sqrt[n]{r} \left( \cos\left(\frac{\theta}{n} + \frac{2\pi k}{n}\right) + i\sin\left(\frac{\theta}{n} + \frac{2\pi k}{n}\right) \right)$$

- Where *k* = 0, 1, 2, ..., *n* − 1
- $\sqrt[n]{r}$ These are \_\_\_\_\_out evenly around a circle with \_\_\_ •

Find the cube roots of -6 + 6i